SH3_13 - Science and technology studiesSH2_7 - Environmental and climate change, societal impact and policySH2_8 - Energy, transportation and mobilitySH2_6 - Sustainability sciences, environment and resources
SDG
Obiettivo 7. Assicurare a tutti l’accesso a sistemi di energia economici, affidabili, sostenibili e moderni|Obiettivo 13. Promuovere azioni, a tutti i livelli, per combattere il cambiamento climatico*
Abstract
MORE&LESS addresses the challenge of contributing to help Europe shape, together with the international community, high environmental standards in line with ICAO Assembly Resolution A39-1, by a thorough and holistic analysis of the environmental impact of supersonic aviation. MORE&LESS aims at maintaining a high level of citizens' and environmental protection at local, regional and global levels, and supports the consequent establishment of regulations and procedures for the future supersonic aviation through solid technical bases. The scientific findings in the fields of aerodynamics, jet-noise, sonic-boom, propulsion, pollutant emissions and environmental impact are in fact transposed into guidelines for the Regulatory Community. Through low and high-fidelity modelling activities and test campaigns, already accepted and validated software tools are enhanced and extended to cover supersonic aviation, to be eventually integrated into the multidisciplinary holistic framework. The application of this framework to the case-studies is the proving ground to verify that the enabling technologies of supersonic aircraft, trajectories and operations comply with the environmental requirements. The case-studies cover the entire spectrum of supersonic speed regime and include the most promising aircraft configurations, propulsive technologies and alternative fuels, such as bio-fuels and liquid hydrogen. MORE&LESS fosters international cooperation, thus paving the way towards the definition of global and internationally agreed regulations, while contributing to maintain world-class knowledge and skills in Europe in the field of supersonic aviation. MORE&LESS targets the engagement of new generations of students, scientists and engineers to inspire and challenge them to build and manage the environmentally sustainable supersonic aviation of the future.
Paesi coinvolti
Francia
Svezia
Germania
Spagna
Italia
Romania
Belgio
Paesi Bassi
Enti/Aziende coinvolti
ENVISA SAS
LUNDS UNIVERSITET
TECHNISCHE UNIVERSITAT HAMBURG
DEUTSCHES ZENTRUM FUR LUFT - UND RAUMFAHRT EV
FUNDACION DE LA INGENIERIA CIVIL DE GALICIA
C.I.R.A. CENTRO ITALIANO RICERCHE AEROSPAZIALI SCPA
"INSTITUTUL NATIONAL DE CERCETARE-DEZVOLTARE AEROSPATIALA ""ELIE CARAFOLI""- INCAS BUCURESTI"
INSTITUT VON KARMAN DE DYNAMIQUE DES FLUIDES
ECATS INTERNATIONAL ASSOCIATION AISBL
INSTITUT FRANCO-ALLEMAND DE RECHERCHES DE SAINT LOUIS
FLET 4.0 - FLEet managemenT optimization through I 4.0 enabled smart maintenance, (2018-2021) - Responsabile Scientifico
National Research
Abstract
Il progetto propone lo sviluppo di metodologie innovative per processi manutentivi di sistemi ingegneristici complessi, basate sulla elaborazione intelligente di dati rilevabili con tecnologie abilitanti la fabbricaintelligente. Le applicazioni sono la manutenzione di flotte di motori in campo aeronautico, di sistemi ferroviari e le applicazioni a sistemi satellitari.
The stratosphere is the highest layer in the atmosphere where aircraft can still fly. Nevertheless, it is presently rarely exploited for commercial aviation. As Europes Vision for Aviation predicts globally a six-fold increase in passenger by 2050, flight levels above the troposphere become attractive and maybe the only way to realize this. While the lower stratosphere could still be reachable for classical aircraft, the higher altitudes would demand for higher speeds. Various technologies, systems and novel aircraft concepts related to high-speed transport have progressed rapidly over the last 20 years showing their technical feasibility and readiness up to TRL-3. Technology roadmaps elaborated by industrial and research teams indicated their readiness-level can easily be brought up to TRL-6 by 2035 provided the related application can be shown to be commercially exploitable.The first project goal covers the multi-functional integration of propulsion, aerodynamics, airframes and on-board systems across various disciplines to define and detail a high-speed aircraft configuration enabling long-haul travels.However, Europe should have simultaneously a directive which flight altitudes are environmentally sustainable on the basis of fuel type and emission rates. This parametric mapping of the stratospheric climate impact covers the second goal of the project.Last but not least, the potential of stratospheric flight relies also on economic viability. Apart from potential routes, aircraft capacity and performance, development and exploitation costs the third goal will also consider human factors, social acceptance, implementation and noise issues. The present proposal will, contrary to regular viability studies, perform a bottom-up approach. The validity will follow a sound technical and scientific approach and shall demonstrate environmental and economic compatibility. This enables then a formulation of regulatory, technological and socio-economic barriers.
Paesi coinvolti
Svezia
Paesi Bassi
Germania
Francia
Spagna
Italia
Belgio
Enti/Aziende coinvolti
TOTALFORSVARETS FORSKNINGSINSTITUT
LUNDS UNIVERSITET
STICHTING NATIONAAL LUCHT- EN RUIMTEVAARTLABORATORIUM
TECHNISCHE UNIVERSITAT HAMBURG
OFFICE NATIONAL D'ETUDES ET DE RECHERCHES AEROSPATIALES
DEUTSCHES ZENTRUM FUR LUFT - UND RAUMFAHRT EV
FUNDACION DE LA INGENIERIA CIVIL DE GALICIA
C.I.R.A. CENTRO ITALIANO RICERCHE AEROSPAZIALI SCPA
Il contributo del Politecnico di Torino all’interno del progetto HEAT (Heat Exchanging pAssive Technology) consiste nella progettazione, sviluppo e test del cosiddetto “controller”, ovvero del sistema di monitoraggio e controllo delle prestazioni dei componenti “heat pipe”. Tale sistema deve essere in grado di acquisire i datiprovenienti da vari sensori di temperatura e pressione, elaborare i dati ricevuti e controllare sia le valvole per la gestione del liquido e del vapore dell’heat pipe sia la sorgente di calore per la gestione della fase di start-up dell’heat pipe. Il controller deve inoltre essere in grado di monitorare costantemente l'intero sistema, generare, controllare edistribuire potenza elettrica alle varie utenze, in modo da rendere il sistema autonomo, e infine ricevere comandi di attivazione/disattivazione e inviare telemetrie da/a stazione di controllo remoto, sempre nell’ottica di rendere il sistema autonomo. A partire dalla definizione dei requisiti del controller, il contributo del Politecnico di Torinoprevede l’effettuazione dell’analisi funzionale del controller ed un supporto alla modellazione matematica dei componenti heat pipe per proseguire infine con la progettazione e sviluppo del prototipo del controller da integrarsi poi con i componenti heat pipe e con le superfici di interfaccia per applicazioni aeronautiche e spaziali
“Application of High Power Electric Propulsion to new Mission Scenarios: Adoption and Improvements of a Multi Input/Multi Output Space System Design Tool”, (2018-2018) - Responsabile Scientifico