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Project 1: Tactical Guidance

Objective 1: Create guidance system for
autonomous UAVs in potentially hostile
environments;

Perform goal-to-set missions
Perform mapping (area coverage) missions

Objective 2: Create taxonomy of flight behaviors
based on perceived risk;

Bio-Inspired Approach: Mimic the behavior of prey
animals seeking food in unknown environment;
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Architecture Overlook
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Goal selection algorithm
based on Octree structure;

Path planner exploits the
environment for stealth;

Trajectory planning employs
output feedback
linearization and fast MPC;

Collision-avoidance based
on semidefinite
programming;

All modules execute in
parallel.



Algorithm to Select Goal Points
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Partition the voxel map
Explored, free vox.;
Explored, occupied vox.;
Unexplored (free) vox..

Determine sufficiently
unexplored partitions;

Determine the largest & closest
partitions;
Goal point that interpolates
their centers;

Systematic exploration: closest
partition
Greedy exploration: largest
partition



Tactical Path Planning

Path planning problem solution over a voxel map

min fk ≜ gk + hk ,

where

gk ≜
k∑

q=1

[κ(d2(r̂q,O))d2(r̂q, r̂q−1)] ,

hk ≜ (1− µ2)d2(r̂k ,G),

κ(α) ≜ 1− µ2e
4µ1µ3−[µ3α+µ1α

−1]
2
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Tactical Path Planning – Search Bias
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Algorithm to Ensure Path Planner Safety

Avoid areas not detectable by the UAV’s field of view

Too close to the yaw axis

Dr. Andrea L’Afflitto From Theory to Robotic Applications October 4, 2023 7 / 48



Fast Collision Avoidance

1 Employ semi-definite programming (SDP) to find
ellipsoid{

w ∈ R3 : (w − rk(i∆T ))TPk(i∆T )(w − rk(i∆T )) + ck(i∆T ) ≤ 0
}
,

containing the UAV & tangent to 1 occupied voxel
Discrimination problem

2 Discretize this ellipsoid
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Comparison with IRIS & SFC

50 simulations & 24 waypoints in S-shaped hallway
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Comparison with IRIS & SFC

50 SIL simulations & 24 waypoints in S-shaped hallway
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Tactical Trajectory Planning I

Cost function:

J̃[r̂k , uk(·)] ≜ ℓf(r̃k(nt∆T )) +
nt−1∑
i=0

ℓ̃(rk(i∆T ), uk(i∆T )),

where

ℓ̃(r̃k , uk) ≜

[
r̃k
uk

]T
R̃

[
r̃k
uk

]
+ q̃r

Tr̃k + q̃u
Tuk ,

ℓf(rk) ≜ (rk − r̂k+1)
T Rr ,f (rk − r̂k+1) + qr ,f

T (rk − r̂k+1) ,

r̃k(i∆T ) ≜ µ4 [rk(i∆T )− r̂k+1]

+ (1− µ4)fsat (µ5(r̂k − rO)) [rk(i∆T )− rO] ,

fsat(w) ≜ sat(∥w∥)/∥w∥
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Tactical Trajectory Planning II

Dynamic Constraints:
xk ((j + 1)∆T ) = Axk (j∆T ) + Buk (j∆T ),[

rk (i∆T )
vk (i∆T )

]
=

[
rinit − re

vinit

]
,

[
rk (nt∆T )
vk (nt∆T )

]
=

[
r̂k+1 − re

vend

]
,

Collision avoidance, saturation & pointing constraints:

Fk (i∆T )

[
xk (j∆T )
u(j∆T )

]
≤≤ fk (i∆T ),
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Fast Trajectory Planning
Reduce MPC problem to QP with block-tridiagonal
matrices

min Ii ,lb(zi ,k) ≜ zTi ,kHi ,kzi ,k + gT
i ,kzi ,k + ν1flb(zi ,k)

+

(l+10)(nt−i)∑
q=1

1

ν4,i ,k,q
log

(
1 + eν4,i,k,q[pi,k,qzi−ĥi,k,q]

)
s.t.Cizi ,k = bi ,k ,

where hard inequality constraints are captured by

flb(zi ,k) ≜ −
(l+10)(nt−i)∑

q=1

log (hi ,k,q − pi ,k,qzi ,k)

Soft constraints: Kreisselmeier-Steinhauser function
avoids buffers & keep banded structure
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Flight Tests Results – Overview
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Selected Flight Test Results I
5 tactical & 5 reckless flight tests

Tactical flights coast obstacles more;

Tactical flights are less predictable;
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Selected Flight Test Results II

Tactical & reckless flight tests with 5 initial conditions
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Comparison with Voxblox Planner (ETH)

Dr. Andrea L’Afflitto From Theory to Robotic Applications October 4, 2023 17 / 48

Take-off

Location

MV r0
(1)

Proposed

Reckless r0
(1)

Proposed

Tactical r0
(1)

MV r0
(2)

Proposed

Reckless r
(2)
0

Proposed

Tactical r
(2)
0



Project 2: Prescribed Performance MRAC
Quick overview of model reference adaptive control :
Find a control law for the plant

ẋ(t) = Ax(t) + BΛ
[
u(t) + ΘTΦ(t, x(t))

]
,

so that limt→∞ ∥x(t)− xref(t)∥ = 0, where A ∈ Rn×n,
Λ ∈ Rm×m & Θ ∈ RN×m are unknown &

ẋref(t) = Arefxref(t) + Brefr(t),

Solution: Set u(t) = K̂T(t)π(t, x(t), r(t)), where

˙̂K (t) = −Γπ(t, x(t), r(t))eT(t)PB

π(t, x , r) ≜
[
xT, rT,−ΦT(t, x)

]T
,

e(t) ≜ x(t)− xref(t)
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MRAC: Transient Challenges

“Large” Γ needed for fast adaptation to rapidly
varying r(t)

Tracking error dynamics is as fast as reference
model

Reference models’ transient dynamics is missed
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Two-Layer MRAC

Theorem
Introduce reference model for the transient

ėref,transient(t) = Atransienteref,transient(t)

s.t. Re(λmax(Atransient)) < Re(λmin(Aref)). Set
u(t) = K̂T(t)π(t, x(t), r(t)) + K̂T

g (t)e(t),

˙̂K (t) = −Γπ(t, x(t), r(t))εT(t)PtransientB ,

˙̂Kg (t) = −Γge(t)ε
T(t)PtransientB ,

ε(t) ≜ e(t)− eref,transient(t)

Then, limt→∞ e(t) = 0 & αmax (e(·)) ≥ −Re(λmax(Aref))
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Control of Quad-Biplanes
Design controller for VTOL UAV

Uncertainties in aerodynamic models

Lack of control surfaces

Nonlinear dynamics
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Tailsitter 6-DOF unified control system
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Design unified control
system for tailsitters;

Does not distinguish among
flight modes
Does not distinguish between
lateral and longitudinal
dynamics

Two-layer MRAC framework;

Avoids unwinding by
leveraging barrier functions;

Novel method for deducing
reference angular velocities.



Problem Setup

Four orthonormal reference frames;
Inertial: I = {O;X ,Y ,Z},
Body: J = {C (·); xJ(·), yJ(·), zJ(·)},
Wind: W = {C (·); xW(·), yW(·), zW(·)}.
Desired: K = {rref(·); xK(·), yK(·), zK(·)}.

Euler parameters used to capture orientation:
q(t) ≜ [q1(t), q

T
v (t)]

T.

Tracking error quaternion: qe(t) ≜ q−1(t) ∗ qref(t).
We want J to track K & avoid the unwinding
phenomenon.

Dr. Andrea L’Afflitto From Theory to Robotic Applications October 4, 2023 23 / 48



Dynamic Equations

Translational equations of motion

r̈ IC (t) =
1

m

[
F I
T(t) +mge3,3 + F I

A(t, p(t), pdot(t))
]
,

Mass m > 0 is unknown, FT(t) ≜ u1(t)e1,3 & F I
A(·) is

aerodynamic force.
Rotational dynamic equations

ω̇(t) = I−1
[
MT(t) +MA(t, p(t), pdot(t))− ω×(t)Iω(t)

]
,

I is matrix of inertia, MT ≜ [u2(t), u3(t), u4(t)]
T is

moment of the thrust force & MA(·) is aerodynamic
moment
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Control Design

Quadbiplanes are underactuated, cannot control
x , y -position directly.
The control system is separated into an outer and
inner loop.

Outer loop computes:
Ideal thrust;
Reference attitude;
Reference angular rates to track user-defined trajectory.

Inner loop computes:
moment of the thrust force;
thrust allocation.
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Outer Loop: Thrust Force Determination

If both the direction and magnitude of the thrust
force could be set arbitrarily

FT,ideal = uouter − RJ
W(α, β)[e1,3, e2,3, 03]F̃

W
A (t, p, pdot),

where F̃W
A is estimate of the aerodynamic force &

uouter is the virtual control input so that

limt→∞

∥∥∥∥∥
[
rC (t)
ṙC (t)

]
−

[
ruser(t)
ṙuser(t)

] ∥∥∥∥∥ = 0

u1(t) must be positive. Thurst direction set by
steering the vehicle’s attitude.

FT,proj(t) ≜

[[
H(FT

T,ideal(t)e1,3)
02

]
, e2,3, e3,3

]
FT,ideal(t)
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Outer Loop: Reference attitude

Let

RK
J (q̃ref(t)) ≜ u1(t)e1,3F

T
T,proj(t) = U(t)Σ̃(t)V T(t)

Σ̃(t) ≜ diag{1, 1, det(U(t)V T(t))},
U ,V : [t0,∞) → R3×3 contain left & right singular
vectors,

u1(t) = H(∥FT,proj(t)∥ − Tmin)∥FT,proj(t)∥

with Tmin > 0 minimum thrust force
We guarantee that

RK
J (q̃ref(t)) = argminR∈SO(3)∥u1(t)Re1,3 − FT,proj(t)∥

Orthogonal Procustes problem
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Outer Loop: Reference angular rates

q̃ref(·) underlying R I
K(q̃ref) is not continuously

differentiable. Hence,

ωref(t) ≜ 2JT(q̃ref(t)) ˙̃qref(t)

cannot be computed directly.
Given geodesic curve

slerp(p, q, h) ≜ p ∗
(
p−1 ∗ q

)h
, (p, q, h) ∈ H×H× [0, 1].

It holds that

d

dh
slerp(p, q, h) = slerp(p, q, h) ∗ log(p−1 ∗ q), h ∈ [0, 1],

d2

dh2
slerp(p, q, h) = −θ2slerpslerp(p, q, h),
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Outer Loop: Reference angular rates

Find h : [0, t] → [0, 1] s.t.

q̇ref(t) = J(qref(t))
[
log(q−1(t) ∗ qref(t))

]
v

dh(τ)

dτ

∣∣∣∣
τ=t

,

q̈ref(t) = J(qref(t))
[
log(q−1(t) ∗ qref(t))

]
v

d2h(τ)

dτ 2

∣∣∣∣
τ=t

− θ2slerp(t)qref(t)

(
dh(τ)

dτ

∣∣∣∣
τ=t

)2

,
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Outer Loop: Deducing dh(τ)
dτ and d2h(τ)

dτ2

MPC Problem: Minimize
nt∑
i=1

[
Ωref,i

Ω̇ref,i

]T
Θ

[
Ωref,i

Ω̇ref,i

]
s.t.

Hi+1 = Hi + Hi ,dotδt +
1

2
Hi ,ddotδt

2, i ∈ {1, . . . , nt − 1},

Hi+1,dot = Hi ,dot + Hi ,ddotδt, i ∈ {1, . . . , nt − 1},
Ωref,i = 2[log(q−1(t) ∗ qref(t))]vHi ,dot, i ∈ {1, . . . , nt},
Ω̇ref,i = 2[log(q−1(t) ∗ qref(t))]vHi ,ddot, i ∈ {1, . . . , nt},
H1 = 0,

Hnt = 1,

Hi ∈ [0, 1], i ∈ {2, . . . , nt − 1},
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MRAC System Design

Let Î ∈ R3×3 be an estimate of the matrix of inertia I

M̃A(t, p, pdot) be an estimate of the moment of the
aerodynamic force

MT(t) = uinner(t) + ω×(t)Îω(t)− M̃A(t, p(t), pdot(t))

The equations of motion reduce to

ẋC (t) = ACxC (t) + BCΛC

[
uIouter(t) + ΘT

outerΦouter(t, p(t), pdot(t))
]

ω̇(t) = I−1
[
uinner(t) + ΘT

innerΦinner(t, p(t), pdot(t))
]

where xC (t) ≜
[(
r IC (t)

)T
,
(
ṙ IC (t)

)T]T
.

MRAC form!
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Numerical simulations: Path
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Numerical simulations: Attitude

Dr. Andrea L’Afflitto From Theory to Robotic Applications October 4, 2023 33 / 48



Numerical simulations: Thrust
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Preliminary Flight Test: Classical MRAC

YouTube Video
Link
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https://youtu.be/XXTcToseCFw?t=51


Project 3: MRAC for Switched Systems

Find a control law for the plant

ẋ(t) = Aσ(t)x(t) + Bσ(t)

[
u(t) + ΘTΦσ(t)(t, x(t))

]
,

where As ∈ Rn×n & Θ ∈ RN×m are unknown so that
limt→∞ ∥x(t)− xref(t)∥ = 0,

ẋref(t) = Aref,σ(t)xref(t) + Bref,σ(t)r(t),

Note
Same framework can be employed for Θσ(t)

Switching time σ(·) is known w.l.o.g.
Uncertainties in σ(·) embedded in A & Θ
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Carathéodory & Filippov Frameworks
Consider the switched system

ẋ(t) = fσ(t)(t, x(t)),

Carathéodory solution:

x(t) = x0 +

∫ t

t0

fσ(τ)(τ, x(τ))dτ, t ≥ t0 a.e.

Filippov solution: If ∃ : x : I → D absolutely
continuous and s.t.

ẋ(t) ∈ K [fσ(t)](t, x(t)), t ∈ I a.e.,

where t0 ∈ I
K [fs ](t, x) ≜

⋂
δ>0

⋂
µ(N )=0

co (fs (t,Bδ(x)\N )) , (s, t, x) ∈ Σ× [t0,∞)×D,

then, x(·) is a Filippov solution
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Switched MRAC in Carathéodory
Framework

Theorem
Consider u(t) = ϕ(Θ̂(t), Φ̃σ(t)(t, x(t))) with

ϕ(Θ̂, Φ̃s) = Θ̂TΦ̃s ,

˙̂Θ(t) = −ΓΦ̃σ(t)(t, x(t))e
T(t)PBσ(t),

Φ̃s(t, x) ≜

 I(s)⊗ x
I(s)⊗ r(t)
−Φs(t, x)

 ,

I(s) ≜
[
1{s∈Σ:s−1=0}(s), . . . , 1{s∈Σ:s−σ=0}(s)

]T
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Switched MRAC in Carathéodory
Framework (cont’d)
Theorem (cont’d)
If dwell time td > 0 & ∃ symmetric P.D. matrices
P ,Q ∈ Rn×n s.t.

AT
ref,sP + PAref,s < −Q, s ∈ Σ

Then, both e(·) & Θ̂(·) are bounded uniformly in both
t0 ∈ [0,∞) & σ(·), & e(t) → 0 as t → ∞ uniformly in both
t0 and σ(·)

Remark
To prove this result, we extended the LaSalle-Yoshizawa
theorem to switched systems in Caratéodory framework
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Switched MRAC in Filippov Framework
Theorem
Consider u(t) = ϕ(Θ̂(t), Φ̃σ(t)(t, x(t))) with σ(·) Lebesgue
integrable

ϕ(Θ̂, Φ̃s) = Θ̂TΦ̃s ,

˙̂Θ(t) = −ΓΦ̃σ(t)(t, x(t))e
T(t)PBσ(t),

Φ̃s(t, x) ≜

 I(s)⊗ x
I(s)⊗ r(t)
−Φs(t, x)

 ,

Both e(·) & Θ̂(·) are bounded uniformly in t0 ∈ [0,∞) &
σ(·), & e(t) → 0 as t → ∞ uniformly in t0 and σ(·)

Note: td = 0 is allowed! Uniqueness of solution not guaranteed.
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UAVs for Sensor Mounting

Design controller for Tiltrotor UAV

Switched dynamical models

Parametric Uncertainties

Nonlinear dynamics
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UAVs for Sensor Mounting

Equations of motion
Switching between tilt-rotor mode & cantilever beam modes

Hσ(t)M(q(t))

[
v̇ I
A(t)

ω̇(q(t), q̇(t))

]
= Hσ(t)

([
fdyn,tran(t, q(t), q̇(t))
fdyn,rot(t, q(t), q̇(t))

]
+ G(q(t))u(t)

)
,

where

Hs ≜

[
1{s∈Σ:s−1=0}(s)I3 03×3

03×3 Irot(s)

]
, M(q) ≜

[
mI3 −mR(q)r×C

mr×C RT(q) I

]
,

fdyn,tran(t, q, q̇) ≜ F I
g −mR(q)ω×(q, q̇)ω×(q, q̇)rC ,

fdyn,rot(t, q, q̇) ≜ −ω×(q, q̇)Iω(q, q̇)−
4∑

i=1

[
IPi

(t)ω̇Pi
(t) + ω×

Pi
(t)IPi

(t)ωPi
(t)
]

− ω×(q, q̇)
4∑

i=1

IPi
(t)ωPi

(t) + r×C RT(q)F I
g,

G(q) ≜

[
R(q)

[
e1,3 e3,3

]
03×3

03×2 I3

]
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UAVs for Sensor Mounting – Flight Tests

Apply feedback-linearizing control law

βs(t, q, qref ,w) ≜ h

(
−
[
fdyn,tran(t, q, q̇)
fdyn,rot(t, q, q̇)

]
+M(q)

[
13 03×3

03×3 Γ−1(q)

]

·
[
q̈ref −

[
03×1

Γ̇(q)ω(q, q̇)

]
− [KP,s ,KD,s ]

[
q − qref
q̇ − q̇ref

]
+ w

])
,

Apply switched MRAC law to design w

YouTube Video
Link
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Ongoing Research
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Hybrid MRAC & UAV Control
Unsteady payload delivery
Improved tracking performance

UAVs in caves and mines
Very challenging environment (unstructured, windy, dark,...)
UAVs to explore mine in visible range & with ground
penetrating radar

Integrated guidance (MPC)
& control (MRAC)
MRAC on
infinite-dimensional spaces

What if we do not know
anything about functional
uncertainties?



We Are Hiring!
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Looking for Graduate Students (MS/Ph.D.)

Motivated
Interested in

Control theory/Applied math
Robotics
Matlab & C++ or Python

Topics:
Hybrid systems
Very high-fidelity simulations
Guidance & control
integration
VTOL UAVs for Shipboard
Landing
UAV & UGV formations in
contested environments



Thanks to Students
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Thanks to Funding Agencies &
Collaborators
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Questions?

Email: a.lafflitto@vt.edu

WEB: https://lafflitto.com
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