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Piezoelectric materials as the most widely used materials in smart structures, provide many

advantages to Vibration Control and Energy Harvesting (EH) applications. These materials have

proven to be very effective in harvesting energy for low power devices such as implantable

electronic devices and condition monitoring systems. Energy harvesting from environmental

vibrations has also seen an increase in interest during the past years as part of the generally

growing awareness for alternative energy sources.
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Vibration-based piezoelectric energy harvesters (VPEHs) can produce peak power when their

resonance frequency matches the frequency of the input ambient vibration (see Fig. 2). Any

difference between these two frequencies can lead to a significant decrease in produced power.

Fig. 1: Piezoelectric energy harvesting technology and its applications

One of the serious drawbacks of the existing designs of VPEHs is their high resonance

frequencies compared to the frequencies of typical ambient vibrations. Thus, an eigen-frequency

analysis could be useful to study the vibration behaviour of smart structures designed for EH

applications. To this end, as the first part of this research, some Analytical Solutions have

been developed to calculate the frequencies of various bimorph structures, and to investigate

the effect of materials and geometry parameters on the system response.

 Proposing novel piezoelectric EH devices for low power autonomous systems
 Development of piezoelectric composite materials for EH applications
 Experimental validation

3.1. Bimorph Shells

A doubly curved shell made of porous core sandwiched between short- and open-circuit

piezoelectric layers is considered as the bimorph structure. Using Hamilton’s principle and the

Maxwell equation, the governing equations of motion are derived based on first order shell

theory. Finally, enforcing the mechanical boundary conditions results in the corresponding

eigenvalue problem revealing the resonance frequencies.

I. Increasing the spherical shell curvature significantly decrease its resonant frequencies.
II. For spherical, hyperbolic paraboloid shells and beam-like structures, increasing the porosity

parameter (e) reduces the frequencies while a reverse trend is seen for cylindrical shells and
plate bimorphs.

III. Bimorph beams with axial-poled piezoelectric layers result in lower resonant frequencies
compared to the other piezoelectricity mode.

IV. The open-circuit resonance frequencies are larger than those of the short-circuit one.
Fig. 3: Porous bimorph doubly curved shell

Fig. 4: Porous bimorph beam operated in transverse (left layout) and shear (right layout) modes of piezoelectricity
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𝐾 − 𝜔2 𝑀 Δ = 0

𝑁𝑥𝑥,𝑥 +𝑁𝑥𝑦,𝑦 + 𝑄𝑥𝑧/𝑅𝑥 = 𝐼0 ሷ𝑢 + 𝐼1 ሷ𝜓𝑥
𝑁𝑥𝑦,𝑥 +𝑁𝑦𝑦,𝑦 + 𝑄𝑦𝑧/𝑅𝑦 = 𝐼0 ሷ𝑣 + 𝐼1 ሷ𝜓𝑦

𝑀𝑥𝑥,𝑥 +𝑀𝑥𝑦,𝑦 − 𝑄𝑥𝑧 = 𝐼1 ሷ𝑢 + 𝐼2 ሷ𝜓𝑥
𝑀𝑥𝑦,𝑥 +𝑀𝑦𝑦,𝑦 − 𝑄𝑦𝑧 = 𝐼1 ሷ𝑣 + 𝐼2 ሷ𝜓𝑦

𝑄𝑥𝑧,𝑥 + 𝑄𝑦𝑧,𝑦 − (𝑁𝑥𝑥/𝑅𝑥 + 𝑁𝑦𝑦/𝑅𝑦) = 𝐼0 ሷ𝑤

Applying the Analytical Solution

3.1. Bimorph Beams

In this section, the effects of transverse (d31) and shear (d15) piezoelectricity modes on the

resonant frequencies of beam-like porous bimorph structures are investigated. Higher order

beam theories are used to consider the effect of transverse shear deformation on the system

response. Applying the same procedure (used in the previous section), the governing equations

are derived and solved analytically, and the exact natural frequencies are finally calculated.

Max. Eq: ׬−ℎ−ℎ𝑝
−ℎ

𝛻.𝐷 𝑑𝑧 + ℎ׬
ℎ+ℎ𝑝 𝛻.𝐷 𝑑𝑧 = 0
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