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State of the art

WEC Classification

Motivation
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State of the art WEC Classification
Attenuator
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Overtopping Oscillating Water Column

Rotating mass Point absorber

Source: EMEC – website: http://www.emec.org.uk/

http://www.emec.org.uk/


State of the art Motivation 

Submerged point absorber

o Wave energy absorption from all directions

o Oscilation in all degrees of freedom

o Simple mooring system design

o Elevated survival capacity

o Zero visual impact
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CETO is a fully submerged, point absorber  
developed by Carnegie 



Mathematical model based 
on the potential flow theory

Cummins equation
Simulink model

Comparison with 
Ansys Aqwa
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Potential flow theory Cummins equation
Potential flow based numerical model

Ansys AQWA

Radiation 
damping

Excitation Forces

Added mass
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Potential flow theory Simulink model

𝐹𝑚 = 𝑘 Δ𝐿

𝐹𝑃𝑇𝑂 = 𝑏𝑝𝑡𝑜
𝑑(Δ𝐿)

𝑑𝑡

Linear reactive control 

𝑘 = 𝜔2(𝑚 + 𝐴(𝜔))

𝑏𝑝𝑡𝑜 = 𝐵(𝜔)

PTO Forces
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Potential flow theory Comparison
Time domain simulations

o Regular waves

o Wave height: 1 m

o Linear mooring stiffness

o Wave periods: [5 – 10] s

o Diameter: 5.16 m
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Computational fluid dynamics
analysis

Fully resolved model

Model comparison

Results and discussion



CFD analysis Fully-resolved model

Fully Eulerian Brinkman penalization method IBAMR library

Momentum equation

Continuity equation

Brinkman penalized constraint force
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CFD analysis Fully-resolved model

Material properties Advection of level set fields
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CFD analysis Fully-resolved model

Characteristics

𝜆 = 1.216 𝑚

𝐻 = 0. 01 𝑚

𝑇 = 0.8838 𝑠

𝑑 = 0.65 𝑚

𝑑𝑠 = 0.25 𝑚

Numerical wave tank
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CFD analysis Model Comparison
Comparison 1 DOF

45 50 55
-6

-4

-2

0

2

4

6
10

-3

IBAMR

Simulink

45 50 55
0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

IBAMR

Simulink

14



CFD analysis Model Comparison
Comparison 2 DOF
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CFD analysis Model Comparison
Comparison 3 DOF
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CFD analysis Results

Buoy density
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Wave height influence

Efficiency



Experimental Campaign
Experimental setup

Small scale prototype
Results



Experimental campaign Setup
Hydraulics laboratory

Wave flume Wave maker Wave sensors
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Experimental campaign Prototype

Camera

Trigger

Buoy

PTO assembly
Wave 
sensor

Wave 
maker
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Experimental campaign Prototype

Encoder

MyRIO

Motor

Driver
Load cell

Pulley

and 

Shaft
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Experimental campaign Prototype
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Experimental campaign Prototype

Hull 2 

λ 32

λ^2 1024

λ^3 32768

Root λ 5.656854249

λ^(7/2) 185363.8

Characteristics Real Case - Pantelleria Scale Experiment (1:32)

Wave Height (m) 1 0.0312

Smallest Period (s) 3 0.53

Highest Period (s) 10 1.767

Highest Frequency (Hz) 0.33 1.885

SmallestFrequency (Hz) 0.1 0.565

Radius  (m) 2.58 0.080

Diameter (m) 5.14 0.161

Volume (m^3) 71.64 0.0021

Mass (kg) 66088 2.0168

Density (kg/m^3) 922.5 922.5

Froude scaling
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Experimental campaign Results
Time domain comparison

Frequency = 1.41 𝐻𝑧
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Design process
Pantelleria

Methodology
Budal diagram

Results
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Design process Pantelleria
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Design process Pantelleria

Island of Pantelleria

27



Design process Methodology
Methodology proposed by Falnes

 Wave power threshold 𝐽𝑇(𝑘𝑊/𝑚) which is being exceeded only one 
third of the year

 Peak period  of the the most frequent waves 

 Determine the wave height   𝐽𝑇 =
𝜌𝑔2𝐻2𝑇

32𝜋
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Design process Methodology
Methodology proposed by Falnes

𝐽𝑇 = 5,048 𝑘𝑊/𝑚

𝐻 = 1 𝑚

T= 5.57 𝑠

 Wave power threshold 𝐽𝑇(𝑘𝑊/𝑚) which is being exceeded only one 
third of the year

 Peak period  of the the most frequent waves 

 Determine the wave height   𝐽𝑇 =
𝜌𝑔2𝐻2𝑇

32𝜋
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Design process Methodology

𝑃𝑎 = 𝑐∞𝑇
3𝐻2

High frequency limit

𝑃𝑏 = 4𝜋3𝜌𝑒−𝑘𝑑𝑠𝑠3,𝑚𝑎𝑥 𝑉𝑠𝐻/𝑇
3

Low frequency limit

𝑉 = 𝑏𝑉𝑠
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Design process Methodology

Sea site Design 
wave

Budal 
diagram

Power 
limits

Physical 
volume

PTO 
stroke

Numerical 
modelling

Control

Optimization 

Experiments

Island of Pantelleria Wave scatter
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Design process Methodology

Initial 
mooring 
length

𝑑𝑠

𝑉𝑠

csaf

𝑆𝑚𝑎𝑥

𝑉𝑠 = 𝑏 ⋅ 𝑉

𝑆𝑚𝑎𝑥 = 𝑏 ∙
2

3
∙ 𝑟

𝑉𝑠 = 2 ∙ 𝜋 ∙ 𝑟2 ∙ 𝑆𝑚𝑎𝑥

𝑑𝑠 = 𝑐 ∙ 𝑟 + 𝑏 ∙
2

3
∙ 𝑟

𝑐𝑠𝑎𝑓 = 𝑑𝑠 − 𝑟 + 𝑠𝑚𝑎𝑥
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Design process Budal Diagram

Device characteristics Budal diagram
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Design process Budal Diagram

Hull 2 detailsPower per volume performance

4.53 𝑚

5.14 𝑚

22.89 𝑚

𝐽𝑇 = 5,048 𝑘𝑊/𝑚
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Design process Performance

Device 25 kW Device 50 kW

Annual production: 274.1678 MWhAnnual production: 108.3374 MWh 35



Design process Performance

Device 75 kW

Annual production: 346.5451 MWh

Capacity factor =
Actual energy generated

Capacity × Time
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Extremum seeking control
Description

Results



Extremum Seeking Control Description

𝜗

𝐽

𝜗∗መ𝜗

ሚ𝜗

𝜂
ሚ𝐽

ሚ𝜗

ሚ𝐽

ሚ𝜗 ∗
ሚ𝐽

Case 1: Positive gradient

The signal ሚ𝜗 ∗ ሚ𝐽 obtained 
is non-negative. 
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Extremum Seeking Control Description

𝜗

𝐽

𝜗∗ መ𝜗

ሚ𝜗

𝜂
ሚ𝐽

ሚ𝜗

ሚ𝐽

ሚ𝜗 ∗
ሚ𝐽

Case 2: Negative gradient

The signal ሚ𝜗 ∗ ሚ𝐽 obtained is 
non-positive. 
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Extremum Seeking Control Description

Power vs. PTO coefficients reference-to-output map for a cylinder
subject to regular waves of period 𝑇 = 0,625 s and height two-
dimensional 𝐻 = 0,01 m. The optimal PTO coefficients are:
𝐾opt = 3720 N/m and 𝐶opt = 18 N·s/m

Power vs. PTO coefficients reference-to-output map for a two-
dimensional cylinder subject to irregular waves obtained through a
JONSWAP spectrum of peak-period 𝑇𝑝 = 0,625 s and significant
height 𝐻𝑠 = 0,01 m. The optimal PTO coefficients are:
𝐾opt = 3440 N/m and 𝐶opt = 32 N·s/m

Irregular wavesRegular waves
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Extremum Seeking Control Results
Sliding-mode ES Relay ES

Least-squares method Perturbation-based ES

Sea State 
parameters:

• 𝑇 = 0,625 s
• 𝐻 = 0,01 m

Optimal values for 
the PTO 
coefficients:

• 𝐾opt = 3720 N/m
• 𝐶opt = 18 N∙s/m

Regular waves
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Extremum Seeking Control Results

Least-squares method ES Perturbation-based 

ES

Sea State 
parameters:

• 𝑇𝑝 = 0,625 s
• 𝐻𝑠 = 0,01 m

Optimal values for 
the PTO 
coefficients:

• 𝐾opt = 3440 N/m
• 𝐶opt = 32 N∙s/m

Relay ESSliding-mode ES

Irregular waves
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Dynamic analysis of a multi-
tether point absorber

Description
Depth control

Modal analysis
Performance results



Multi – tether PA Description
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Multi – tether PA Description
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Multi – tether PA Depth control

Depth
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Multi – tether PA Linearization
Linearization of the mooring dynamics 
using Taylor series

Tether elongation

Stiffness matrix
∆𝐿1

∆𝐿2
∆𝐿3
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Multi – tether PA Modal analysis

𝑴+ 𝑨(𝜔) −1𝑲𝑃𝑇𝑂 − 𝜆𝑰 𝒗 = 0

𝝀𝒊 = 𝝎𝒊
𝟐

𝑽 = 𝒗𝟏 𝒗𝟐 𝒗𝟑

Eigenvalue

Eigenvector

Mode 1 Mode 2 Mode 3
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Multi – tether PA Modal analysis

0 5 10 15 20 25
0

0.2

0.4

0.6

0.8

1

1.2

Mode 1

Mode 2

Mode 3

0 5 10 15 20 25
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

Mode 1

Mode 2

Mode 3

Total

0 5 10 15 20 25
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Mode 1

Mode 2

Mode 3

Total

0 5 10 15 20 25
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Mode 1

Mode 2

Mode 3

Total

L

Characteristics

Wave Height  = 0.1 m

Radius  = 3.25 m

Height  = 2.16 m

Depth  = 30 m
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Tether 1 Tether 2 Tether 3

1

2
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Multi – tether PA Performance
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Dynamic analysis of an 
interconnected WEC array

Description

Results



Interconnected array Description

𝐻𝑒𝑎𝑣𝑒

𝑆𝑢𝑟𝑔𝑒
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Interconnected array Description

Combined with offshore wind
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Interconnected array Description

Combined with offshore wind
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Interconnected array Description
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Interconnected array Description

1) Regular wave analysis

2) Wave periods: 3 – 12 seconds

3) Wave height: 1 m

4) Spherical geometry

5) Interconnection between the WECs
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Interconnected array Results

Surge forces Heave forces

WEC array – T=7 s, H=1 m
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Interconnected array Results
WEC array – T=7 s, H=1 m
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Interconnected array Results
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Interconnected array Results
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Conclusions – Thesis results

 Comparison and validation of the model with Ansys AQWA

 Point absorber should not exceed the power capacity of 75 Kw in the

Mediterranean Sea (Pantelleria) 

 Linear Potential flow theory models overpredict the dynamics

 Linear Potential flow theory results suboptimal PTO coefficients

 Converters with low mass density have an increased permanent load in their 
PTO and mooring lines. Moreover, mass density influences the range of 
resonance periods of the device.

 For higher wave heights, the wave absorption efficiency of the converter 
decreases

61



Conclusions – Thesis results

 The numerical results show that except for the self-driving ES algorithm ther
other four strategies reliably converge for the two-parameter optimization 
problem

 All extremum seeking schemes achieve optimum within a single simulation

 A point absorber, which is able to control its vertical position under the sea  
is able to avoid extreme wave conditions and continue to function under the 
desired wave energy flux

 The multi tether PS teen to behave and perfom exactly as the generic PA 
when the length of the main mooring is greater than 10 m

 The virtual seabed can contribute significantly to the power performance of 
the device since the lateral moorings - PTOs can absorb wave energy from 
the surge motion
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Conclusions – Thesis results

 The interconnection between the point absorbers in a WEC array can result 
higher power performance in comparison to a generic point absorber array
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