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In this research, Advanced Finite Element methods are used to describe the mechanical nonlinear behavior of complex structures and materials such as anatomic components. Both geometrical and physical
nonlinearities will be considered using the Component-Wise approach (CW) in order to obtain the accurate and precise results by CUF-1D or CUF-2D nonlinear models.

The first ongoing part of this study focuses on the geometrical nonlinearities such as the large deflection and post-buckling behavior of structures specifically isotropic rectangular plates. By taking into account the
three-dimensional Green—Lagrange strain components, the explicit forms of the secant and tangent stiffness matrices of unified plate elements are presented in terms of the fundamental nuclei and nonlinear
parameters. The Newton—Raphson linearization scheme combined with a path-following method based on the arc-length constraint is utilized to solve the geometrically nonlinear problem. Nonlinear CUF-2D plate
model is used considering different nonlinear theories based on Green—Lagrange strain components. In this regard, the well-known von Karman theory for the nonlinear deformations of plates is focused with
different modification such as the thickness stretching and shear deformations due to transverse deflection. The post-buckling curves and related stress distributions for each case are presented and discussed.

The second part of this PhD thesis will be focused on the implementation of Physical Nonlinearities in the CUF-1D or CUF-2D models in order to be used in the complex biostructures or soft materials with different
plastic or hyperelastic behaviors.

Evaluation of geometrically nonlinear parameters
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Modeling of physical nonlinear materials requires the use of constitutive equations, which in the
simplest form account for nonlinear elasticity. The challenge in mathematical modeling is to select Displacement | g - Strain il - Stress
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