
Research activities overview

M. Gherlone
Department of Mechanical and Aerospace Engineering

Politecnico di Torino

www.polito.it
www.dimeas.polito.it
marco.gherlone@polito.it

AESDO Group
LAQ-AERMEC laboratory

http://www.polito.it/
http://www.dimeas.polito.it/
mailto:Marco.gherlone@polito.it


❑ Innovative materials characterization

❑ Modeling of composite structures

❑ Impacts simulation

❑ Optimization and probabilistic design

❑ Shape sensing and Structural Health Monitoring

❑ Experimental facilities (LAQ-AERMEC laboratory)

Research topics and experimental facilities
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Innovative materials characterization

❑ Numerical characterization of honeycomb and corrugated cores, metallic foams and 

other innovative materials

Homogeneous orthotropic lamina.

Equivalent properties through analytical / numerical models

Honeycomb core.
Closed cells metallic 

foam

Honeycomb core
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Modeling of composite structures

❑ Refined Zigzag Theory (RZT) for beams

▪ Based on original linear zigzag model

▪ One additional kinematic variable
w.r.t. linear zigzag model

▪ Zigzag function from the partial
continuity of transverse shear stress
and vanishing on top and bottom
laminate surfaces

▪ No anomalies of transverse shear
quantities

▪ C0 continuity of shape functions for
easier finite elements development
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❑ Results (RZT exact)

▪ CF beam, tip transverse load, L/2h=5, symmetric sandwich lay-up

Original linear 

zigzag model

RZT

Modeling of composite structures
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❑ RZT naturally extended to particular material lay-ups

▪ Single-layered ▪ External 

weak 

layers

▪ Functionally 

graded 

materials

▪ Angle-ply 

laminates

Modeling of composite structures
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❑ RZT for plates

❑ Finite elements (beams, plates and shells)

▪ Special shape functions to eliminate shear-locking, improve accuracy and reduce 

computational cost

Modeling of composite structures
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❑ Experimental assessment

▪ Static (4PB SS sandwich beams)

▪ Dynamic (free vibrations of CF sandwich beams)

Aerospace Division

Modeling of composite structures



9

❑ Experimental assessment

▪ Buckling (sandwich beams)

▪ Dynamic (free vibrations of sandwich oil-pan)

Beam L hc hf EXP (N) RZT (%) TBT (%)

WF-1-L1 443 20.00 0.68 24,831 -6.30 -6.31

WF-1-L2 427 20.00 0.68 24,929 0.50 0.49

IG-2-L1 160 5.40 1.45 3,188 1.13 -11.89

IG-4-L1 230 5.00 3.40 11,297 -5.33 -37.50

IG-4-L2 230 5.00 3.40 12,374 -7.88 -38.44

Mode Experimental RZT
(shell elms)

MSC/NASTRAN 
(QUAD4 elms)

1 1.00 0.96 0.65

2 1.37 1.41 0.79

Modeling of composite structures



10

❑ Mid/high velocity impacts - numerical 
simulations of ballistic tests for the 
evaluation of containment properties of 
metallic materials

❑ Low velocity impacts - analysis of 
multilayered composite and sandwich 
structures quasi-statically indented by 
rigid impactors (evaluation of the 
contact area and of the pressure 
distribution)

Impacts simulation

Contact area computation between 

a rigid spherical indentor and a 

composite multilayer plate

0,19 [ms]             0,35 [ms]              0,55 [ms]               0,75 [ms] 

Numerical simulation of a 

ballistic test
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❑ Design space exploration techniques (DOE, Monte Carlo Simulation)

❑ Optimization methods based on genetic algorithms

❑ Multi-objective and multi-disciplinary optimization methods that allow taking into 
account stochastic variation of design parameters (Reliability Robust Design)

❑ Optimization of complex engineering systems

Optimization and probabilistic design



Mesh, shape functions, local-

global system transformation, 

assembly, partition, solution
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❑ inverse Finite Element Method (iFEM) key idea* 

for shape sensing
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* Tessler A., Spangler J.L. (2005)

Shape sensing and Structural Health Monitoring
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❑ iFEM for beam and frame structures

▪ Timoshenko kinematics
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Shape sensing and Structural Health Monitoring
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❑ iFEM for beam and frame structures

▪ Least-squares functional to be minimized

n = number of locations along the       

beam length where the strain 

measures are available
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❑ iFEM for beam and frame structures

▪ Strain measures from surface strain measurements (circular cross section)

▪ Extension to more complex cross-sectional shape (airfoil)
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❑ Results

▪ CF beam, thin-wall cross section, tip harmonic force

Fz=Fz0sin(2f0t)

Viscous damping 5% with 
respect to the critical value at 
each frequency

f0=450 Hz (about halfway 
between 1F and 2F modes)

Max error = 1.1%

2 beam inverse elms

16 strain gauges

Shape sensing and Structural Health Monitoring
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❑ Experimental results (static)

▪ CF beam, thin-wall cross section

▪ Several tip load configurations

▪ Strain rosettes and displacement 
transducers

▪ Several strain rosettes configurations 
(C1, C2, C3, C4)

1 beam 

inverse 

elm

Shape sensing and Structural Health Monitoring
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❑ Experimental results (dynamic)

▪ CF beam, thin-wall cross section

▪ Tip harmonic force (80 Hz) 

▪ Strain rosettes and one accelerometer

▪ Several strain rosettes configurations

1 beam inverse elm
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❑ Experimental results (static)

▪ On-going experimental campaign on 3D 
printed airfoil beam (with fiber optical 
sensors and strain gauges)

Shape sensing and Structural Health Monitoring
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❑ iFEM for plate and shell structures

▪ Numerical application to composite wing boxes

Shape sensing and Structural Health Monitoring
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❑ iFEM for plate and shell structures

▪ Experimental results (static)

▪ Wing-shaped plate (own weight)

▪ Linear strain gages

132 plate tria inverse elms

44 linear strain gages

Shape sensing and Structural Health Monitoring
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❑ iFEM for plate and shell structures

▪ Experimental results (static)

▪ Stiffened plate (concentrated force)

▪ Fiber-optic strain sensors

Shape sensing and Structural Health Monitoring
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Experimental facilities (LAQ-AERMEC laboratory)

Flat panel configuration. Curved panel configuration.

❑ Multi-purpose testing facility

▪ possibility to test flat and curved panels
▪ six loading axes (maximum load, static and dynamic, 300 [kN]) whose action is 

independent)
▪ possibility to simulate pressurization effects (up to 1.5 [bar])
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Experimental facilities (LAQ-AERMEC laboratory)

❑ Gas-gun ballistic facilities

▪ systems composed by a tank, a barrel 
and by a shooting system based on an 
electrical-resistance

▪ velocity is measured by means of three 
laser emitters and three photodiodes

▪ a digital camera with a flash lamps unit 
system allow getting some images of the 
projectile while it approaches the target 
and when the impact occurs.)

GAS-GUN #1

✓ Maximum tank pressure: 50 [bar]

✓ Barrels length: 4 / 6 / 10 [m]

✓ Barrels inside diameter: 4 / 6 / 8 [in]

GAS-GUN #2

✓ Maximum tank pressure: 16 [bar]

✓ Barrels length: from 1.5 to 4 [m]

✓ Barrels inside diameter: 38 [mm]
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Experimental facilities (LAQ-AERMEC laboratory)

❑ Experimental modal analysis

▪ Complete set of sensors, actuators and acquisition 
systems to perform EMA – Experimental Modal 
Analysis on small-to-mid size structures

▪ Data acquisition system LMS SCADAS III + Testlab
(16 input channels for AC-DC-IEPE sensors, 2 
output channels for sine, random, shock, burst, 
closed loop actuator control)

▪ IEPE miniature accelerometers
▪ IEPE force transducers
▪ Impact hammer
▪ Modal shakers (10 [N], 50 [N], 100 [N])
▪ Dynamic Exciter TIRA TV 56280 LS (8000 [N])
▪ Signal conditioning devices


