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• Formulation of advanced theories of structures and elasticity models based on CUF and
nonloncal theories (perydinamics or couple-stress theories);

• Apply the developed models to practical engineering problems (smart structures and
biostructures);

• Adding geometrical nonlinear analysis on these models to take into account any
problems in the large displacement field.

• Collaboration with City University of Hong Kong.

Carrera Unified Formulation allows the three-dimensional displacement field u(x, y, z) to be expressed as a general expansion of the primary unknowns. In the case of one-dimensional
theories, one has: Fs: functions of the coordinate x and z on the cross-section

us: vector of the generalized displacements, along the beam axis
M: number of the terms used in the expansion.

From the principle of virtual work:
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𝜀 = 𝜀𝑙 + 𝜀𝑛𝑙 = 𝒃𝑙 + 𝒃𝑛𝑙 𝒖

𝜀 =

𝜀11 𝜀21 𝜀31
𝜀12 𝜀22 𝜀32
𝜀13 𝜀23 𝜀33

𝜒 =

𝜒11 𝜒21 𝜒31
𝜒12 𝜒22 𝜒32
𝜒13 𝜒23 𝜒33

𝜀𝑖𝑗 = 𝑢𝑖,𝑗 + 𝑒𝑖𝑗𝑘𝜔𝑘 𝑖, 𝑗, 𝑘 = 1,2,3

𝜒𝑖𝑗 = 𝜔𝑖,𝑗

𝜎 =

𝜎11 𝜎21 𝜎31
𝜎12 𝜎22 𝜎32
𝜎13 𝜎23 𝜎33

𝜇 =

𝜇11 𝜇21 𝜇31
𝜇12 𝜇22 𝜇32
𝜇13 𝜇23 𝜇33

𝜎 = 𝜆 𝑡𝑟𝜀 𝐼 + 𝜇 + 𝛼 𝜀 + 𝜇 − 𝛼 𝜀𝑇

𝜇 = 𝛽 𝑡𝑟𝜒 𝐼 + 𝛾 + 𝜀 𝜒 + 𝛾 − 𝜀 𝜒𝑇

𝒖 1,2,3 = 𝑢1 𝑢2 𝑢3 𝜔1 𝜔2 𝜔3
𝑇

Unknowns:

Displacements Micro-Rotations
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A Newton-Raphson linearized incremental scheme along with an arc-length
constraint relation have been used to solve the nonlinear algebraic system.
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In micropolar elasticity it is assumed that the body consists of interconnected
particles in the form of small rigid bodies. The internal forces are defined in
terms of a classical force stress tensor 𝝈 and a micropolar couple stress tensor 𝝁:

The micropolar deformation is fully described by the asymmetric strain 𝜺 and
twist 𝝌 tensors

The displacement field is described by the 3 displacements and 3 microrotations.
The unknowns are 6 for each point.


