POLITECNICO

Design and Control Methodologies ik
for Electrified and Intelligent Vehicles

: . Di ' Department of Mechanical and Aerospace
Candidate: Pier Gluseppe Anselma RXXI] Cyde Engineering (DIMEAS), Politecnico di Torino, Italy

Tutor: Prof. Giovanni Belingardi Al. : 2017/2018 Mail: pier.anselma@polito.it

RESEARCH PLAN

MOTIVATION

1. Development of optimal control
strategy for HEV powertrains. '
F Integration | 3. Optimal HEV architecture

—

design methodology.
» Finding an energy management strategy that guarantees optimal fuel economy, light computational burden and ease r

» Transportation electrification vision currently represents the leading path in society and automotive industry.

» Control strategy is considered a crucial issue in the design of hybrid electric vehicles (HEVS).

of on-board real-time implementation still represents an open research question.

» Smart, connected, autonomous and shared mobility represents a novel opportunity to develop dedicated and

Improved approaches for designing and controlling vehicle systems.
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3. OPTIMAL HEV ARCHITECTURE DESIGN METHODOLOGY 2. CONNECTED MOBILITY SCENARIO
State-of-the-art:
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What’s next:

» Development of control algorithm (energy consumption minimization) for various traffic scenarios

Including electrified vehicles in connected mobility.

What’s been done:

Integration of connected mobility scenario in the design of vehicle systems (powertrain, brakes, ...).

» Clutch connections represent a discrete highly non-linear optimization parameter =» design

exploration using brute force method and PEARS as offline control strategy [4].
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What’s next:

» Integration of further optimization criterion (real-world emissions, mode-shifting feasibility,...)

» More efficient exploration algorithm for the design space.




